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Abstract. On the basis of preserving required symmetries and capturing the essential 
ingredients, the scaling properties ofthe frontier of Eden model clusters have beensuggcsted 
by Kardar er 01 to be governed in the continuum limit by a Burgers equation with noise. 
We show that such a correspondence is exact by mapping explicitly the Eden model onto 
the problem of the conformation of a directed polymer in a random medium at zero 
temperature. The latter model has been shown to be itself in correspondence with Burgers' 
equation. In  addition, this mapping allows us to have access to the distribution of noise 
to be included in Burgers' equation to exactly reproduce the Eden growth model. Finally, 
this implies that the Eden model always shows the same universal behaviour, in contrast 

disordered medium. 
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It would be extremely presumptuous to try to find a field of physics where the heat 
equation has no relevance. A somewhat similar ubiquity seems to be encountered for 
!he zon!inezr diRcsioz eq-ation of Btirgers type: 

where h(x, I )  is a function of the spatial coordinate x and time t, and ~ ( x ,  t )  is a noise 
term. In particular, Kardar et a /  [ I ]  proposed to model the growth and roughening of 
the frontier of an Eden growth model [2] using this equation. h represents in this case 
the distance of the frontier from its origin after a time t. This equation-or a derived 
version of it-rules the conformation of directed polymers in a random medium at 
zero temperature as shown in [3]. The same problem in two dimensions can also be 
applied to the interface between two king domains at zero temperature when the 
coupling between sites fluctuates spatially (the so-called random bond problem) [3]. 
Other applications can be found in the geometricai structure of ballistic deposition 
fronts [4], or transport properties of random diode networks [ 5 ] .  

B Also at: Laboratoircde Physique et Mecaniquedes Milieux HCtirogknes, URACNRS857, Ecale Supdrieure 
d e  Physique et Chimie Industrielles, 10 rue Vauquelin, F-75231 Paris CCdex 05, France. 

0305-4470/91/060295+06$03.50 0 1991 IOP Publishing Ltd L295 



L296 Letter to the Editor 

One of the interesting features of (1) is that the function h(x ,  t )  exhibits non-trivial 
scalingbehaviours. In particularthefluctuation w ofh, w 2 = ( h ( x ,  t ) 2 ) - ( h ( x ,  t))'(where 
( . . . )  denotes a spatial average), obeys the following scaling property: 

w =  LX'p(L'/t) (2) 
where Lis  the system size. The function 'p satisfies the two limits: for x >> 1, p ( x )  - x?/' 
or wCC t x i z  whereas for x<< 1, ~ ( x )  is constant or woc Lx. The exponents ,y and z only 
depend on the space dimension. We will refer in this paper to the case ofa d-dimensional 
space plus one dimension of time as a (d+l)-dimensional problem. In (1+1) 
dimension, the problem has been solved exactly, leading to the following values of 
,y = 2  and z =;, in the case of Gaussian noise 7 with short-range correlations in space 
and time. Medina et a1 [6]  have discussed in detail the case of long-range space and 
time correlations. 

Very receniiy, Znang [ i j  has noticed ihai a probiem very ciose io ihat ofthe directed 
polymer in a random medium can display different exponents ,y and z if the noise 
distribution has a power-law tail at infinity. This numerical study was proposed to 
account for the discrepancy found between experimental determinations of ,y and z 
on various experimental systems [8,9] modelled as Eden clusters and the expected 
theoretical values mentioned above. 

The purpose of this letter is first to establish a direct mapping between the Eden 
growth model and the directed polymer problem, and second to discuss the relevance 
of the breakdown of universality found by Zhang in the context of the Eden growth 
model [7]. 

Let us briefly recall the construction rules of Eden clusters. We consider a ( d +  1)- 
dimensional lattice, and choose a seed cluster. This cluster is often a single point, but 
any oiher sei can be chosen. i n  order io avoid the probiem of change of shape during 
the growth process, we will throughout this paper choose a d-dimensional hyperplane. 
For a finite-size system, we may implement periodic boundary conditions at the lateral 
borders of the initial seed, so as to deal with a 'cylindrical geometry'. We choose at 
random a site neighbour to the cluster, and include it in the cluster. We then update 
the set of sites which are susceptible to be chosen as the neighbours of the new cluster. 
We choose again a site in this set and include it in the cluster. This process is repeated 
ad injnitum. In  order to define the time in this process we simply count the number 
of sites added to the cluster and divide by the area of the seed cluster. With this 
definition, during one time unit, on average, one site is added to the cluster per unit 
area. The clusters which are grown with this algorithm are compact. The average 
position of the frontier of the cluster is a hyperplane parallel to the seed, and moving 
away from the seed at a constant veiocity of  one (iattice mesh size per unii time). 

The scaling properties of the set of frontier sites are accounted for by (21, where 
h represents the distance of the frontier site from the seed and w the fluctuations of 
h. Kardar et al [l]  suggested modelling the growth of the Eden clusters by ( I )  in the 
continuum limit. The physical origin of the nonlinear contribution to (1) (which is the 
one that determines the scaling behaviour), is to be found in the assumption that the 
growth occurs normal to the local surface, whose orientation fluctuates. 

Let us now define the directed polymer problem in a random medium, at zero 
temperature. We still consider a (d+l)-dimensional lattice, and assign to each site i 
a random number x, picked from a distribution f ( x )  dx. These random numbers can 
be thought of as a local interaction energy between the polymer and the embedding 
medium at this site. A directed polymer on a lattice will be a directed path P along a 

I 
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given direction (with no overhangs) that spans the lattice. The energy of the polymer 
having a conformation P will be the sum of x’s along the path. At zero temperature, 
the polymer will be in the lowest energy conformation, and thus its energy will be E 
such that 

E = m i n  1 xi . 
p LP 1 (3) 

The path which satisfies this minimum is called P*. 
Different properties of the optimal conformation have been studied. In particular, 

the energy E can be shown to have a non-analytic correction term, as a function of 
the length of the polymer, I [ I ]  

E = / e , + A E = I ( e , + a I ~ ‘ / “ l i ) + ~ o ~  (4) 

where uII is a critical exponent ( uII =; in two dimensions). The fluctuations of the 
energy around its mean value decrease with I as I-””Il. This scaling form has to be 
changed when the polymer is confined into a strip-like geometry, where the width of 
the network L i s  much smaller than the length I. In this case, the correction term scales 
as L-””’ instead of I-“”ll. In two dimensions ( d  = 1) the value of uL is 1. The crossover 
from one correction term to the other may be expressed through the equation 

The crossover function @(x) in ( 5 )  behaves as ~ ” ” 1 1  for large arguments and as a 
constant for small values of x. From this expression we may infer the ‘roughness’ of 
the minimum-energy path P* (i.e. its mean deviation from a straight line S) which 
increases with its length / according to a power law: 

6 oc I*J-lI ( 6 )  

as long as S < L. Thus the crossover between the two regimes reported above corre- 
sponds to the condition that the path P* ‘feels’ or not the lateral boundaries ( L  equal 
to or larger than S). 

In the mapping of Kardar er a/ [3] between the directed polymer problem and 
Burgers’ equation for h, it was the minimal energy that was mapped onto h, interpreted 
as the height of the interface in the Eden model. We will in the following show a 
different but direct mapping between the Eden model and the directed polymer problem. 
The scaling exponents used in ( 5 )  are therefore different from those used in [3]. We 
will give the correspondence later. 

It should also be noted that since the path is asymptotically flat, (i.e. SI/ tends to 
zero as / increases), the directedness requirement is not necessary. Even if we do not 
impose that the path is directed, it will-at least on a large scale-be directed. It means 
in practice that eventually the mean energy of the polymer e, may vary, but not the 
scaling exponents uII and uL under the removal of the directedness constraint. 

Let us consider the Eden model, and construct an equivalent directed polymer 
problem. Since the clusters are compact, all sites of the lattice will after some time be 
part of the cluster. We set a ‘clock‘ on each site and record the time during which a 
site has been a potential growth site, i.e. the time delay during which the site was 
neighbour to the cluster without being part of it. Let us call T( this delay for site i. It 
is easy to compute from these numbers the real time li at which the site became part 
of the cluster. I t  is equal to T; plus the time at which i became a neighbour to the 
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cluster. This latter time, ij ,  is the minimum of r, for all sites j neighbour to i. Writing 
this property recursively allows us to reformulate the time ti as the minimum of the 
sum of delays T~ along any path, P(,  connecting i to the initial cluster: 

We see a close resemblance of the latter equation to (3) relative to the directed polymer 

polymer starting in i and reaching the seed cluster. We can construct a 'dictionary' 
which allows us to translate one property from one problem into the other one. Table 
1 shows this translation both for the physical parameters and the corresponding critical 
exponents (as we will derive below). For instance, using the properties recalled above 
for the DP problem, we can state that, on average, the mean time needed to reach a 

w,,, U =  yruyurr,urrar L" L11G "IDLa.llL.ci I.( ,,U,,, i L U  lllr JCC" C l Y J L C l  

expected from the constant velocity of the interface. This corresponds to the leading 
term in the energy of the polymer as a function of its length. Thus naturally the T 
distribution is normalized so as to ensure e,= 1 in (4). 

(up) probiem, ioiai tiiiie ii is io 'ie -w-iih $he minimiiiii energy Uf a 

aite i, i i ,  ... :I, L^ --̂ -̂ A:--,., 6,. *La 2:" t-..,. ~ 1- c-,.... ' .̂  .C^ ""̂ ,I nl..^t^- ̂ " --- I-̂  a> C a l l  uc 

Table 1.  Translation between the physical parameten and the critical exponents of the 
Eden model and of the directed polymer (DP) problem. 

Parameters Critical exponents 

Eden DP Eden D P  

h I X (VI1 - l ) / U L  

L L I .Id", 
T x z i i z - x j  ~ 1 1  
t E I l ( 2 - x )  "I 

Let us now derive the relations between the scaling behaviours of both problems. 
The Eden cluster constructed u p  to a time t can be interpreted as the set of sites i 

less than or equal to t. The major difference between both problems is that, for the 
directed polymer problem, the control parameter is the length I ,  whereas it is the time 
t (corresponding to the energy for the polymer problem) for the Eden case. Let us 
first consider the early stage of the Eden model ( i < <  L" in (2)). To map one problem 
onto the other we have to invert (4) so as to express I as a function of E :  

I = E /  e, - a /  eo( E / eo)("~l~"l"~l + HOT (8) 

h = ~ - - ~ ~ ' " ~ I ~ ' ' I " ~ I + H O T .  (9) 

thl! the diTCC!P(! po!ymer s!lK+lng in i and reaching the seed r!IJster has an energy 

or using the dictionary, and setting eo= 1 as obtained above, 

The fluctuation of h, or the roughness w of the interface, is given by the correction 
term of (9). Thus we may identify 

To obtain a second relation between the critical exponents, we have to consider the 
cross-over criterion in both cases, or equivalently the late stage of the Eden cluster 
compared with a directed polymer feeling the lateral boundaries. For Eden, the 
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crossover size corresponds to L a  f”‘ (see (2)). For the directed polymer problem, ( 6 )  
can be rewritten as Lal”L’”11. Identification of these two equations (using / a t  to the 
first order) leads to 

z = v,l/ YL . (11) 

Equations (10) and (11) makes it possible to express z and ,y as a function of and 
uL, and vice versa as reported in table 1. 

In this connection between both problems, we have also obtained the distribution 
of waiting times 7 or equivalently of local interactions x. It has been shown [lo] that 
the density n of growth sites per unit area in the Eden model is constant as soon as 
a very first transient regime is over. This early stage is very small compared with the 
crossover time which controls the roughness of the surface. The probability of picking 
a site during the time d t  is simply df/n,  independent of the past history. The distribution 
of waiting time f ( ~ )  d r  is thus a Poisson distribution: 

f ( ~ ) = ( l / n ) e - ” ”  (12) 

for 0 s  T<CO. Thus the distribution of local energy x in the directed polymer problem 
which reproduces the Eden growth model is completely characterized from our con- 
struction. Figure 1 shows the result of a small numerical simulation of the direct 
measurement of the waiting time distribution during the growth of an Eden cluster. 
The semi-log plot of the distribution gives a straight line which agrees with the 
result (12). 

0 50 100 -150 200 

7 (arbitrary units) 

Figure 1. Semi-log plot of the distribution of waiting times T from the Eden model. The 
simulation paints (+) are compared with the expected distribution (straight line). 

Let us finally discuss the problem of universality. Zhang [7] recently considered a 
problem extremely close to the directed polymer model as described above. The only 
difference lies in the fact that the optimal path studied was the one which maximized 
the sum of random variables x of the sites through which the path goes. Obviously 
when the distribution of x is bounded, both the minimal and the maximal path have 
similar properties since one can change x into -x (plus eventually a constant to keep 
the local energies positive). However, the observation of Zhang was to note that when 
the x distribution presents a power-law tail at infinity with a small exponent a, then 
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the scaling exponents uI and changed continuously with 01. This property was called 
‘breakdown of universality’. The motivation to consider this breakdown was to propose 
an explanation for the discrepancy between the observed values of ,y and z in experi- 
ments [8,9] which were apparently related to the Eden model, and the ‘classical values’ 
of ,y and z. 

it is the minimal path that comes naturally into play in the polymer problem, 
the distribution of local energy x or 7 is uniquely determined as an exponential 

distribution, and does not present any power-law tail close to infinity. 
The first remark is the more important. It has been shown [ l l ]  on a hierarchical 

lattice (which mimics a two-dimensional Euclidean one) that all possible stable scaling 
regimes could be worked out. In particular, when only positive local energies are 
considered (x > 0)-what is obviously expected if x is interpreted as a delay time-then 
the minimal path problem has a unique basin of attraction, i.e. all distributions of x 
lead to the same values of x and z. No breakdown of universality is ever seen. 

This does not exclude the fact that for other problems which could be modelled 
by a minimal path in the directed polymer model, a breakdown of universality occurs 
provided the distribution of local energies has a power-law tail close to minus infinity 
with an exponent close enough to zero (less than six [l l])  as observed by Zhang [7]. 

We have shown that the Eden model could be mapped exactly onto a directed 
polymer problem, including the distribution of local energies in the form of an 
exponential distribution. This allows us to establish that the Eden model has universal 
properties, and that no breakdown of universality is expected without changing the 
rules of the model. 

This leaves open the question of the experimental observations of the scaling 
exponents x and z on various real systems, which differ from the ones relative to the 
strict Eden model. 

We acknowledge useful discussions with J Feder, E Guyon, H J Herrmann and T 
J~ssang.  AH and ELH are partially supported by the German-Norwegian Research 
Cooperation. 

In the mapping we have presented, we note that: 
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